CFP last date
21 October 2024
Reseach Article

Generalized (k, r) – Lucas Numbers

by Ashwini Panwar, Kiran Sisodiya, G.P.S. Rathore
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 159 - Number 6
Year of Publication: 2017
Authors: Ashwini Panwar, Kiran Sisodiya, G.P.S. Rathore
10.5120/ijca2017912962

Ashwini Panwar, Kiran Sisodiya, G.P.S. Rathore . Generalized (k, r) – Lucas Numbers. International Journal of Computer Applications. 159, 6 ( Feb 2017), 20-22. DOI=10.5120/ijca2017912962

@article{ 10.5120/ijca2017912962,
author = { Ashwini Panwar, Kiran Sisodiya, G.P.S. Rathore },
title = { Generalized (k, r) – Lucas Numbers },
journal = { International Journal of Computer Applications },
issue_date = { Feb 2017 },
volume = { 159 },
number = { 6 },
month = { Feb },
year = { 2017 },
issn = { 0975-8887 },
pages = { 20-22 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume159/number6/27006-2017912962/ },
doi = { 10.5120/ijca2017912962 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:05:03.480676+05:30
%A Ashwini Panwar
%A Kiran Sisodiya
%A G.P.S. Rathore
%T Generalized (k, r) – Lucas Numbers
%J International Journal of Computer Applications
%@ 0975-8887
%V 159
%N 6
%P 20-22
%D 2017
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we have defined new kinds of (k, r)-Lucas number. But the difference among these sequences comes to the forefront not only through the value of the natural number k but also through the value of new parameter which we find involved in the definition of this distance. Consequently we have various properties of these numbers for study.

References
  1. B. Singh, P. Bhadouria and O. Sikhwal , Sum Properties for the k- Lucas number with arithmetic indexes, , J. Math. Comput. Sci., 4(2014), 105- 117.
  2. D. Brod, K. Piejko and I. Wloch, Distance Fibonacci numbers, distance Lucas numbers and their applications, ArsCombinatoria, CXII(2013), 397- 410 .
  3. D. Tasci and E. Kilic, On the order k- generalized Lucas Numbers, Appl. Math. Comput. 155(2014), 637- 64 .
  4. I. Wloch, U. Bednarz, D. Brod, A. Wloch and M. Wolowiecz-Musial, On a new type of distance Fibonacci numbers, Discrete Applied Mathematics,161(2013), 2695-2701.
  5. K. Keygisiz and A. Sahin, New generalizations of Lucas numbers, Gen. Math. Notes, , 10(1) (2012), 63-77.
  6. S. Falcon and A. Plaza, On the k- Lucas numbers, international Journal of Contemporary Mathematical Sciences, 21(6) (2011), 1039-1050.
  7. S. Falcon, On k-Lucas numbers of arithmetic indexes,Applied Mathematics and Computation, 3(2012), 1202- 1206.
  8. S. Falcon, On Lucas triangle and its relationship with k- Lucas numbers, J. Math. Comput. Sci. 2(2012), 425-34.
  9. Y.K.Gupta, V.H.Badshah, M.Singh, K.Sisodiya, Diagonal Function of k-Lucas Polynomial, Turkish Journal of Analysis and Number Theory 3(2)(2015), 49-52
Index Terms

Computer Science
Information Sciences

Keywords

k– Lucas Number (k r) Lucas Number Binet`s Formula Generating engines.