Abstract

A subset S of vertices in a graph G is said to be an independent set of G if each edge in the graph has at most one endpoint in S and a set W (V is said to be a resolving set of G, if the vertices in G have distinct representations with respect to W. A resolving set W is said to be an independent resolving set, or an ir-set, if it is both resolving and independent. The minimum cardinality of W is called the independent resolving number and is denoted by \(\text{ir}(G) \). In this paper, we determine the independent resolving number of Fibonacci Cubes and Extended Fibonacci cubes.

References

2. Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffman and M. Mihalak, Network Discovery and Verification, IEEE Journal on Selected Areas in Communications, Vol.24, No. 12,
5. Hsu, W. J., Fibonacci cubes - a new interconnection topology, IEEE Trans. Parallel and
Distributed Systems, 4, no.1, pp. 3-12, 1993.
6. Hsu, W. J., Fibonacci cubes - Properties of an Asymmetric Interconnection Topology,
8. Ioana zelina, A survey on cycles embeddings in Fibonacci and extended Fibonacci cubes,

Index Terms

Computer Science Applied Mathematics

Keywords

Resolving set, Independent resolving number, Fibonacci Cubes, Extended Fibonacci Cubes,
Hamming distance.