CFP last date
22 April 2024
Reseach Article

Exploring the Non-Medical impacts of Covid-19 using Natural Language Processing

by Amol Agade, Samta Balpande
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 175 - Number 36
Year of Publication: 2020
Authors: Amol Agade, Samta Balpande
10.5120/ijca2020920923

Amol Agade, Samta Balpande . Exploring the Non-Medical impacts of Covid-19 using Natural Language Processing. International Journal of Computer Applications. 175, 36 ( Dec 2020), 16-23. DOI=10.5120/ijca2020920923

@article{ 10.5120/ijca2020920923,
author = { Amol Agade, Samta Balpande },
title = { Exploring the Non-Medical impacts of Covid-19 using Natural Language Processing },
journal = { International Journal of Computer Applications },
issue_date = { Dec 2020 },
volume = { 175 },
number = { 36 },
month = { Dec },
year = { 2020 },
issn = { 0975-8887 },
pages = { 16-23 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume175/number36/31684-2020920923/ },
doi = { 10.5120/ijca2020920923 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-07T00:40:51.298995+05:30
%A Amol Agade
%A Samta Balpande
%T Exploring the Non-Medical impacts of Covid-19 using Natural Language Processing
%J International Journal of Computer Applications
%@ 0975-8887
%V 175
%N 36
%P 16-23
%D 2020
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Ongoing COVID-19 Pandemic has resulted into massive damage to various platforms of global economy which has caused disruption to human livelihood. Natural Language Processing has been extensively used in different organizations to categorize sentiments, perform recommendation, summarizing information and topic modelling. This research aims to understand the non-medical impact of COVID-19 on global economy by leveraging the natural language processing methodology. This methodology comprises of text classification which includes topic modelling on unstructured COVID-19 media articles dataset provided by Anacode. Like other Natural Language Processing algorithms, Latent Dirichlet allocation (LDA) and Non-negative matrix factorization (NMF) has been proposed to classify the media articles dataset in order to analyze COVID-19 pandemic impacts in the different sectors of global economy. Model Accuracy was examined based on the coherence and perplexity score which came out to be 0.51 and -10.90 using LDA algorithm. Both the LDA and NMF algorithm identified similar prevalent topics that was impacted by COVID-19 pandemic in multiple sectors of economy. Through intertopic distance map visualization produced by LDA algorithm, it can be reciprocated that general industries which includes children schooling, parental care, and family gatherings had the major impact followed by business sector and the financial industry.

References
  1. Jelodar, H.; Wang, Y.; Yuan, C.; Feng, X.; Jiang, X.; Li, Y.; & Zhao, L. Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools and Applications 2018, 78, 15169–15211, doi:10.1007/s11042-018-6894-4
  2. Toubia, O.; Iyengar, G.; Bunnell, R.; & Lemaire, A. Extracting Features of Entertainment Products: A Guided Latent Dirichlet Allocation Approach Informed by the Psychology of Media Consumption. Journal of Marketing Research 2018, 56, 18–36, doi:10.1177/0022243718820559
  3. Feuerriegel, S.; & Pröllochs, N. Investor Reaction to Financial Disclosures across Topics: An Application of Latent Dirichlet Allocation: Investor Reaction to Financial Disclosures across Topics. Decision Sciences 2018, doi:10.1111/deci.12346
  4. Xu, Z.; Liu, Y.; Xuan, J.; Chen, H.; & Mei, L. Crowdsourcing based social media data analysis of urban emergency events. Multimedia Tools and Applications 2017, 76, 11567–11584, doi:10.1007/s11042-015-2731-1
  5. Chew, C.; & Eysenbach, G. Pandemics in the Age of Twitter: Content Analysis of Tweets during the 2009 H1N1 Outbreak. PloS One 2010, 5, e14118–e14118, doi:10.1371/journal.pone.0014118
  6. Zhao, W.; Zhang, G.; Yuan, G.; Liu, J.; Shan, H.; & Zhang, S. The Study on the Text Classification for Financial News Based on Partial Information. IEEE Access 2020, 8, 100426–100437, doi:10.1109/ACCESS.2020.2997969
  7. El‐Haj, M.; Rayson, P.; Walker, M.; Young, S.; & Simaki, V. In search of meaning: Lessons, resources and next steps for computational analysis of financial discourse. Journal of Business Finance & Accounting 2019, 46, 265–306, doi:10.1111/jbfa.12378
  8. Batra, R.; & Daudpota, S. Integrating Stock Tweets with sentiment analysis for better prediction of stock price movement. 2018, 1–5, doi:10.1109/ICOMET.2018.8346382
  9. Li, Q.; Deleger, L.; Lingren, T.; Zhai, H.; Kaiser, M.; Stoutenborough, L.; Jegga, A.; Cohen, K.; & Solti, I. Mining FDA drug labels for medical conditions. BMC Medical Informatics and Decision Making 2013, 13, 53–53, doi:10.1186/1472-6947-13-53
  10. Frost & Sullivan Honors Linguamatics for Developing a Best-in-Class NLP-based Data Mining Platform for the Healthcare Industry: I2E makes natural language processing-based text mining intuitive and interactive. (2017, July 20). PR Newswire.
  11. Handoyo, E.; Arfan, M.; Soetrisno, Y.; Somantri, M.; Sofwan, A.; & Sinuraya, E. Ticketing Chatbot Service using Serverless NLP Technology, 2018, 325–330, doi:10.1109/ICITACEE.2018.8576921
  12. Greene, D.; & Cross, J. Unveiling the Political Agenda of the European Parliament Plenary: A Topical Analysis. 2010,1–10, doi:10.1145/2786451.2786464
  13. Fatemi, M.; & Safayani, M. Joint sentiment/topic modeling on text data using a boosted restricted Boltzmann Machine. Multimedia Tools and Applications 2019,78, 20637–20653, doi:10.1007/s11042-019-7427-5
  14. Fang, Y.; Si, L.; Somasundaram, N.; & Yu, Z. Mining contrastive opinions on political texts using cross-perspective topic model, 2012, 63–72, doi:10.1145/2124295.2124306
  15. Thomas, S.; Adams, B.; Hassan, A.; & Blostein, D. Modeling the evolution of topics in source code histories, 2011, 173–182, doi:10.1145/1985441.1985467
  16. Tran, B.; Nghiem, S.; Sahin, O.; Vu, T.; Ha, G.; Vu, G.; Pham, H.; Do, H.; Latkin, C.; Tam, W.; Ho, C.; & Ho, R. Modeling Research Topics for Artificial Intelligence Applications in Medicine: Latent Dirichlet Allocation Application Study. Journal of Medical Internet Research 2019, 21, e15511–e15511, doi:10.2196/15511
  17. Kuang, D.; and Park, H. Fast rank-2 nonnegative matrix factorization for hierarchical document clustering. In Proc. the 19th ACM International Conference on Knowledge Discovery and Data Mining 2013, 739–747.
  18. Kim, J.; He, Y.; and Park, H. Algorithms for nonnegative matrix and tensor factorizations: A unified view based on block coordinate descent framework. Journal of Global Optimization 2013.
  19. Gonzales, E.F.; and Zhang, Y. Accelerating the Lee-Seung algorithm for non-negative matrix factorization. Technical Report.
  20. Ray, S.; & Bandyopadhyay, S. An NMF based approach for integrating multiple data sources to predict HIV-1–human PPIs. BMC Bioinformatics 2016, 17, 121–121, doi:10.1186/s12859-016-0952-6
  21. Hee, S. Exploring the Initial Impact of COVID-19 Sentiment on US Stock Market Using Big Data. Sustainability 2020, 12, 6648, doi:10.3390/su12166648
  22. Bollen, J.; Mao, H.; & Zeng, X. Twitter mood predicts the stock market. 2010, doi:10.1016/j.jocs.2010.12.007
  23. Bharathi, S.; Geetha, A.; & Sathyanarayana, R. Sentiment Analysis of Twitter and RSS News Feeds and Its Impact on Stock Market Prediction. International Journal of Intelligent Engineering & Systems 2017, 10, 68.
  24. Pereira, D.; Junior, N.; and Caloba, L. "Financial Time Series Forecasting Using Non-Linear Methods and Stacked Autoencoders," 2018 International Joint Conference on Neural Networks (IJCNN) 2018, Rio de Janeiro,1-8, doi: 10.1109/IJCNN.2018.8489425.
  25. Chamola, V.; Hassija, V.; Gupta, V.; and Guizani, M. A Comprehensive Review of the COVID-19 Pandemic and the Role of IoT, Drones, AI, Blockchain, and 5G in Managing its Impact, IEEE Access 2020, vol. 8, 90225-90265, doi: 10.1109/ACCESS.2020.2992341.
  26. Hegde, A.; & Masthi, R. Digital Contact tracing in the COVID-19 Pandemic: A tool far from reality. Digital Health 2020, 6, 205520762094619–2055207620946193, doi:10.1177/2055207620946193
  27. Zuber, S.; & Brüssow, H. COVID 19: challenges for virologists in the food industry. Microbial Biotechnology 2020, 13, 1689–1701, doi:10.1111/1751-7915.13638
  28. Lan, F.; Suharlim, C.; Kales, S.N.; and Yang, J. Association between SARS-CoV-2 infection, exposure risk and mental health among a cohort of essential retail workers in the United States.medRxiv,2020.2006.2008.20125120.2020,URL:https://www.medrxiv.org/content/medrxiv/early/2020/06/09/2020.06.08.20125120.full.pdf
  29. Sethi, B.; Sethi, A.; Ali, S.; & Aamir, H. Impact of Coronavirus disease (COVID-19) pandemic on health professionals. Pakistan Journal of Medical Sciences 2020, 36, S6–S11, doi:10.12669/pjms.36.COVID19-S4.2779
  30. Dauner, C.; Perlman, J.; & Dougherty, T. 5 ways hospitals should prepare to access COVID-19 disaster funding. Healthcare Financial Management 2020, 74, 36–39.
  31. Lutz, H. GM freshenings pushed back by pandemic. Automotive News 2020, 94, 6.
  32. Mead, D.; Ransom, R.; Reed, S.; and Sager, S. The impact of the COVID19 pandemic on food price indexes and data collection," Monthly Labor Review, U.S. Bureau of Labor Statistics, August 2020, doi:10.21916/mlr.2020.18.
  33. Lipenkova, J. Covid-19 Public Media Dataset by Anacode. Available online: https://www.kaggle.com/jannalipenkova/covid19-public-media-dataset (accessed on 10 October 2020).
  34. Asmussen, C.B.; Møller, C. Smart literature review: a practical topic modelling approach to exploratory literature review. Journal of Big Data 2019, 6, 93, doi:10.1186/s40537-019-0255-7
  35. Rana, T.; Cheah, Y.; & Letchmunan, S. Topic Modeling in Sentiment Analysis: A Systematic Review. Journal of ICT Research and Applications 2016, 10, 76–93, Doi:10.5614/itbj.ict.res.appl.2016.10.1.6
  36. Suri, P.; & Roy, N. Comparison between LDA & NMF for event-detection from large text stream data. 2017, 1–5, doi:10.1109/CIACT.2017.7977281
  37. Wang, Y.; Zhao, X.; Sun, Z.; Yan, H.; Wang, L.; Jin, Z.; Wang, L.; Gao, Y.; Law, C.; & Zeng, J. Peacock: Learning Long-Tail Topic Features for Industrial Applications. ACM Transactions on Intelligent Systems and Technology 2015, 6, 1–23, doi:10.1145/2700497
  38. Kalepalli, Y.; Tasneem, S.; Phani , P.; & Manne, S. Effective Comparison of LDA with LSA for Topic Modelling. 2020, 1245–1250, doi:10.1109/ICICCS48265.2020.9120888
  39. George, L.; & Birla, L. A Study of Topic Modeling Methods. 2018, 109–113, doi:10.1109/ICCONS.2018.8663152
  40. Barde, B.; & Bainwad, A. An overview of topic modeling methods and tools. 2017, 745–750, doi:10.1109/iccons.2017.8250563
  41. Korshunov, A.; & Gomzin, A. Topic modeling in natural language texts. Proceedings of the Institute for System Programming of RAS 2012, 23, 215–244,doi:10.15514/ISPRAS-2012-23-13
  42. Sapul, M.; Htike, A.; & Jiamthapthaksin, R. Trending topic discovery of Twitter Tweets using clustering and topic modeling algorithms. 2017, 1–6, doi:10.1109/JCSSE.2017.8025911
  43. Alhawarat, M.; & Hegazi, M. Revisiting K-Means and Topic Modeling, a Comparison Study to Cluster Arabic Documents. IEEE Access 2018, 6, 42740–42749,doi:10.1109/access.2018.2852648
  44. Rashid, J.; Shah, S.; Irtaza, A.; Mahmood, T.; Nisar, M.; Shafiq, M.; & Gardezi, A. Topic Modeling Technique for Text Mining Over Biomedical Text Corpora Through Hybrid Inverse Documents Frequency and Fuzzy K-Means Clustering. IEEE Access 2019, 7, 146070–146080,doi:10.1109/access.2019.2944973
  45. Gao, Y.; Xu, Y.; & Li, Y. Pattern-based Topics for Document Modelling in Information Filtering. IEEE Transactions on Knowledge and Data Engineering 2015, 27, 1629–1642, doi:10.1109/TKDE.2014.2384497.
  46. Alostad, J. Reducing Dimensionality Using NMF Based Cholesky Decomposition, 2017, 49–55, doi:10.1145/3129676.3129697
Index Terms

Computer Science
Information Sciences

Keywords

COVID-19 Deep Learning Natural Language Processing Topic Modelling Text Classification Latent Dirichlet allocation (LDA) Non-negative matrix factorization (NMF).