Knee Joint Articular Cartilage Segmentation, Visualization and Quantification using Image Processing Techniques: A Review

International Journal of Computer Applications
© 2012 by IJCA Journal
Volume 42 - Number 19
Year of Publication: 2012

Authors:
M. S. Mallikarjuna Swamy
Mallikarjun S. Holi

Abstract

Knee is a complex and articulated joint of the body. Cartilage is a smooth hyaline spongy material between the tibia and femur bones of knee joint. Cartilage morphology change is an important biomarker for the progression of osteoarthritis (OA). Magnetic resonance imaging (MRI) is the modality widely used to image the knee joint because of its hazard free and high resolution soft tissue contrast. Cartilage thickness measurement and visualization is useful for early detection and progression of the disease in case of OA affected patients. A wide variety of algorithms are available for knee joint image segmentation. They are classified as pixel based and model based methods. Based on the human intervention required, segmentation methods are also classified as manual, semi-automatic and fully automatic methods. This paper reviews knee joint articular cartilage segmentation methods, visualization, thickness measurement, volume measurement and validation methods.

References

- Dzung L. Pham, Chenyang Xu, and Jerry L. Prince, "Current methods in medical image segmentation"; Annual Review of Biomedical Engineering, vol. 02, pp. 315–37, 2000
- Jiann-Shu Lee and yi-Nung Chung, "Integrating edge detection and thresholding approaches to segmenting femora and patellae from magnetic resonance images"; Biomedical Engineering Applications, Basis & Communications, vol. 17, no. 1, pp. 1-11, 2005.
Knee Joint Articular Cartilage Segmentation, Visualization and Quantification using Image Processing Techniques: A Review

- Sonka, Hlavac and Boyle, "Digital image processing and computer vision", Cengage Learning, 2008.

Index Terms

Computer Science

Pattern Recognition
Keywords

Cartilage Thickness MRI Osteoarthritis Knee Joint Image Segmentation