Notification: Our email services are now fully restored after a brief, temporary outage caused by a denial-of-service (DoS) attack. If you sent an email on Dec 6 and haven't received a response, please resend your email.
CFP last date
20 December 2024
Reseach Article

dg*-Continuous Functions in Topological Spaces

by R. Sudha, K. Sivakamasundari
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 74 - Number 18
Year of Publication: 2013
Authors: R. Sudha, K. Sivakamasundari
10.5120/12985-0031

R. Sudha, K. Sivakamasundari . dg*-Continuous Functions in Topological Spaces. International Journal of Computer Applications. 74, 18 ( July 2013), 21-24. DOI=10.5120/12985-0031

@article{ 10.5120/12985-0031,
author = { R. Sudha, K. Sivakamasundari },
title = { dg*-Continuous Functions in Topological Spaces },
journal = { International Journal of Computer Applications },
issue_date = { July 2013 },
volume = { 74 },
number = { 18 },
month = { July },
year = { 2013 },
issn = { 0975-8887 },
pages = { 21-24 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume74/number18/12985-0031/ },
doi = { 10.5120/12985-0031 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:42:38.203417+05:30
%A R. Sudha
%A K. Sivakamasundari
%T dg*-Continuous Functions in Topological Spaces
%J International Journal of Computer Applications
%@ 0975-8887
%V 74
%N 18
%P 21-24
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The Aim of this paper is to introduce the new class of function called -continuous function by using -closed set and study their basic properties in topological spaces. We also investigate its relationship with other types of functions.

References
  1. Abd El-Monsef, M. E. , Rose Mary, S. and Lellis Thivagar, M. , On -closed sets in topological spaces, Assiut University Journal of Mathematics and Computer Science, 36 (2007), 43 – 51.
  2. Arya, S. P. and Nour, T. , Characterizations of S-normal spaces, Indian J. Pure. Appl. Math. , 21(8) (1990), 717 – 719.
  3. Balachandran, K. , Sundaram, P. and Maki, H. , On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Math. , 12 (1991), 5 – 13.
  4. Bhattacharya, P. and Lahiri, B. K. , Semi-generalized closed sets in topology, Indian J. Math. , 29(1987), 375 – 382.
  5. Crossley, S. G. and Hildebrand, S. K. ,Semi-closure,Texas J. Sci. ,22 (1971), 99-112.
  6. Devi, R. , Balachandran, K. , and Maki, H. , On generalized ?-continuous maps and ?-generalized continuous maps, Far East J. Math. , Sci. , Special Volume (1997), 1 – 15.
  7. Dontchev, J. and Ganster, M. , On ?-generalized closed set s a n d T 3 / 4 – spaces, Mem. Fac. Sci. Kochi Univ. Ser. A, Math. , 17 (1996), 15-31.
  8. Lellis Thivagar, M. , Meera Devi, B. , Some new class of functions via - sets, International Journal of mathematical archive, 1 (2011), 169 – 173.
  9. Lellis Thivagar, M. , Rose Mary, M. , Remarks on contra - continuous functions, International Journal of Mathematics Game theory and Algebra.
  10. Lellis Thivagar, M. , Meera Devi, B. and Hatir, B. , - closed sets in topological spaces, Gen. Math. Notes, 1 (2010), 17 – 25.
  11. Levine, N. , Semi-open sets a n d semi-continuity in t o p o l o g i c a l s p a c e s, Amer. Math. Monthly, 70 (1963), 36 – 41.
  12. Levine, N. , Generalized c l o s e d sets in topology, Rend. Circ. Mat. Palermo, 19 (1970), 89 – 96.
  13. Maki, K. , Devi, R. and Balachandran, K. , Generalized ?-closed sets in topology, Bull. Fukuoka Uni. Ed part III, 42(1993), 13 – 21.
  14. Maki, K. , Devi, R. and Balachandran, K. , Associated topologies of generalized ?-closed sets and ?-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. , 15(1994), 57 – 63.
  15. Mashhour, A. S. , Hasanein , I. A. , and EL-Deep, S. N. , ?-continuous and ?-open mappings. Acta Math. Hung, 41 (1983), 213 – 218.
  16. Njastad, O. , On s o m e c l a s s e s o f nearly open sets, Pacific J Math. 15 (1965), 961 – 970.
  17. Stone, M. , Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41(1937), 374 – 481.
  18. Sudha, R. , Sivakamasundari, K. , On -closed sets in topological spaces, International Journal of mathematical archive, 3 (2012), 1122 – 1230.
  19. Velicko. N. V. , H-closed topological spaces. Amer. Math. Soc. Transl. , 78 (1968), 103 – 118.
Index Terms

Computer Science
Information Sciences

Keywords

Generalized closed sets ?-closure ?g-closed sets and g-open sets