Call for Paper - March 2023 Edition
IJCA solicits original research papers for the March 2023 Edition. Last date of manuscript submission is February 20, 2023. Read More

Nano Fiber Images Thresholding based on Imperial Competitive Algorithm

Print
PDF
International Journal of Computer Applications
© 2014 by IJCA Journal
Volume 99 - Number 6
Year of Publication: 2014
Authors:
Neda Dehghan
Pedram Payvandy
Mohamad Ali Tavanaei
10.5120/17380-7916

Neda Dehghan, Pedram Payvandy and Mohamad Ali Tavanaei. Article: Nano Fiber Images Thresholding based on Imperial Competitive Algorithm. International Journal of Computer Applications 99(6):37-41, August 2014. Full text available. BibTeX

@article{key:article,
	author = {Neda Dehghan and Pedram Payvandy and Mohamad Ali Tavanaei},
	title = {Article: Nano Fiber Images Thresholding based on Imperial Competitive Algorithm},
	journal = {International Journal of Computer Applications},
	year = {2014},
	volume = {99},
	number = {6},
	pages = {37-41},
	month = {August},
	note = {Full text available}
}

Abstract

Nano fibers are widely used in various industries, therefor knowing the morphology is important. Thresholding is a simple but effective technique for image segmentation. The goal of image segmentation is to cluster pixels into salient image regions, i. e. , regions corresponding to individual surfaces, objects, or natural parts of objects. In this paper a novel method is proposed for performing image segmentation. The purpose of this paper proposed an imperial competitive algorithm with the objective function from Kmeans clustering algorithm for Nano fibers image thresholding. Then algorithm used, with the algorithms such as: global threshold, local threshold, Kmeans clustering algorithm and FCM methods were compared. Finally, a powerful algorithm for image thresholding is found. The comparisons and experimental results show that purposed algorithm is better than other methods particularly global and local thresholding, Kmeans and even FCM.

References

  • Fu, B. , Mui, S. K. , J. K. 1981. A Survey on Image Segmentation. Pattern Recognition, 13, 3–16.
  • Ng, H. F. 2006. Automatic thresholding for defect detection. Pattern recognition letters, 27(2006), 1644-1649.
  • Bansal, S. , and Maini, R. A Comparative Analysis of Iterative and Otsu's Thresholding Techniques. Int. J. Comput. Applications, 66, 45-47.
  • Sahoo, P. K. , Soltani S. A. K. C. , and Wong, A. K. (1988). A survey of thresholding techniques. Computer vision, graphics, and image processing, 41, 233-260.
  • Otsu, N. (1975). A threshold selection method from gray-level histograms. Automatica, 11(285-296), 23-27.
  • Liao, P. S. , Chen, T. S. , & Chung, P. C. (2001). A fast algorithm for multilevel thresholding. J. Inf. Sci. Eng. , 17(5), 713-727.
  • Singh, K. C. , Satapathy, L. M. , Dash, B. , & Routray, S. K. (2011). Comparative Study on Thresholding. International Journal of Instrumentation Control & Automation (IJICA), 1(1), 73-77.
  • Niblack, W. , (1986). an Introduction to Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ.
  • Lin, W. T. , Lin, C. H. , Wu, T. H. , & Chan, Y. K. (2010). Image segmentation using the k-means algorithm for texture features. World Academy of Science, Engineering and Technology, 65, 612-615.
  • Srinivas, K. , and Srikanth, V. , (2012). A Scientific Approach for Segmentation and Clustering Technique of Improved K-Means and Neural Networks. Int. J. Adv. Res. Comput. Science Software Eng. , 2, 183-189.
  • Yong, Y. , Chongxun, Z. , & Pan, L. (2004). A novel fuzzy c-means clustering algorithm for image thresholding. Measurement Science Review, 4(1), 11-19.
  • Padmavathi, G. , Muthukumar, M. , & Thakur, S. K. (2010). Nonlinear Image segmentation using fuzzy c means clustering method with thresholding for underwater images. Int. J. Comput Science Issues, 7(3), 35-40.
  • Mahjoub, M. A. (2011). Improved FCM algorithm applied to color image segmentation. Can. J. Image Processing and Comput Vision, 2(2), 16-19.
  • Sivakumar, S. , & Chandrasekar, C. (April, 2012). Lungs image segmentation through weighted FCM. In Recent Advances in Computing and Software Systems (RACSS), 2012 International Conference on (109-113). IEEE.
  • Sivanand, S. (2013). Adaptive Local Threshold Algorithm and Kernel Fuzzy C-Means Clustering Method for Image Segmentation. Proc of IJLTET, Int. J. Latest Trends Eng. Technol, 2(3), 261-265.
  • Soltanpoor, H. , VafaeiJahan, M. , & Jalali, M. (2013). Graph-Based Image Segmentation Using Imperialist Competitive Algorithm. Advances in Computing, 3(2), 11-21.
  • Pourdeyhimi, B. , Ramanathan, R. , & Dent, R. (1996). Measuring fiber orientation in nonwovens part I: simulation. Text. Res. J. , 66(11), 713-722.
  • Pourdeyhimi, B. , & Dent, R. (1997). Measuring Fiber Orientation in Nonwovens Part IV: Flow Field Analysis. Text. Res. J. , 67(3), 181-187.
  • Chhabra, R. (2003). Nonwoven uniformity-measurements using image analysis. Int. Nonwoven J. , 43-50.
  • Ziabari, M. , Mottaghitalab, V. , & Haghi, A. K. (2009). Application of direct tracking method for measuring electrospun nanofiber diameter. Brazilian Journal of Chemical Engineering, 26(1), 53-62.
  • Ziabari, M. , Mottaghitalab, V. , McGovern, S. T. , & Haghi, A. K. (2007). A new image analysis based method for measuring electrospun nanofiber diameter. Nanoscale Res Let, 2(12), 597-600
  • Kanafchian, M. , Valizadeh, M. , & Haghi, A. K. (2011). Prediction of nanofiber diameter for improvements in incorporation of multilayer electrospun nanofibers. Korean J. Chem. Eng. , 28(3), 751-755.
  • Haghi, A. K. (2010). Electrospun nanofiber process control. Cellulose Chem. Technol, 44(9), 343-352.
  • Shin, E. H. , Cho, K. S. , Seo, M. H. , & Kim, H. (2008). Determination of electrospun fiber diameter distributions using image analysis processing. Macromol. Res. , 16(4), 314-319.
  • Ziabari, M. , Mottaghitalab, V. , & Haghi, A. K. (2008). Evaluation of electrospun nanofiber pore structure parameters. Korean J. Chem. Eng. , 25(4), 923-932.
  • Xu, B. (1996). Measurement of pore characteristics in nonwoven fabrics using image analysis. Cloth Text. Res. J, 14(1), 81-88.
  • Aydilek, A. H. , Oguz, S. H. , & Edil, T. B. (2002). Digital image analysis to determine pore opening size distribution of nonwoven geotextiles. J. Comput Civil Eng. , 16(4), 280-290.
  • Bezdek, J. C. , Hall, L. O. , Clarke, L. P. (1993). Review of MR image segmentation techniques using pattern recognition, Medical Physics, 20(4), 1033-1048.
  • Bezdek, J. C. , (1973) Cluster validity with fuzzy sets, Journal of Cybernetics, 3(3), 58-73.
  • Fukuyama, Y. , & Sugeno, M. (1989, July). A new method of choosing the number of clusters for the fuzzy c-means method. In Proc. 5th Fuzzy Syst. Symp (Vol. 247).
  • Xie, X. L. , & Beni, G. (1991). A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Machine Intelligence, 13(8), 841-847.
  • Kwon, S. H. (1998). Cluster validity index for fuzzy clustering. Electron Lett, 34(22), 2176-2177
  • Dunn, J. C. (1974). Well-separated clusters and optimal fuzzy partitions. J. Cybern, 4(1), 95-104.
  • Davies, D. L. and Bouldin, D. W. (1979). A Cluster Separation Measure. IEEE Trans on Pattern Anal and Machine Intelligence, 1(2), 224–227.
  • Sharma, S. C. (1996). Applied Multivariate Techniques. John Wiley and Sons. Publication, New York, NY, USA (1996).
  • Halkidi, M. , Batistakis, Y. , & Vazirgiannis, M. (2001). On clustering validation techniques. J. of Intelligent Information Systems, 17(2-3), 107-145.
  • Atashpaz-Gargari, E. , Lucas, C. , (2007). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. IEEE cong. Evol. Comput. Proc. Int. Conf. in Singapore. 4661–4667.
  • Wang, Z. , Bovik, A. C. , Sheikh, H. R. , & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. Image Processing, IEEE Transactions on, 13(4), 600-612.